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Bifurcations and chaos in a coupled
superconducting-quantum-interference-device ring–resonator system

T. D. Clark,* J. F. Ralph, R. J. Prance, H. Prance, J. Diggins, and R. Whiteman
Physical Electronics Group, School of Engineering, University of Sussex, Brighton, Sussex BN1 9QT, United Kingdom

~Received 3 November 1997!

In this paper we consider from a theoretical viewpoint the dynamical behavior of a superconducting-
quantum-interference-device ring~a single Josephson weak link enclosed by a thick superconducting ring! in
its ground state when coupled inductively to a radio frequency~rf! tank circuit resonator. We show that this
simple system, when strongly driven at rf, displays a rich nonlinear dynamical structure, including unusual fold
bifurcations and chaos.@S1063-651X~98!02904-3#

PACS number~s!: 05.45.1b, 41.20.2q, 47.20.Ky, 85.25.Dq
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I. INTRODUCTION

Over the years the nonlinear dynamics associated w
circuits containing Josephson weak-link devices have b
the focus of a great deal of attention. In particular, mu
work has been concentrated on the behavior of a sim
superconducting-quantum-interference-device~SQUID! ring
~a single Josephson weak link, capacitanceC, enclosed by a
thick superconducting ring, inductanceL! inductively
coupled to a parallel radio frequency~rf! LC resonant tank
circuit @1–3#. This interest arises because of the nonlin
response of the screening supercurrent flowing in a SQU
ring to an external magnetic fluxFx , which, for finite cou-
pling, is enhanced by the feedback between the ring and
tank circuit. In recent experimental work we have explor
some of the rich nonlinear effects that can be generate
this apparently simple ring-tank circuit system when it
driven at rf. In this paper we consider in detail the theoreti
model we have used to describe the system.

The screening current response of a SQUID ring can
conveniently categorized as reversible or irreversible in
external fluxFx , these two regimes of behavior being r
ferred to, respectively, as inductive and hysteretic. In t
work we will be concerned only with reversible responses
the inductive~dissipation-less! mode, in which the screenin
current has an almost-sawtooth,F0- (5h/2e) periodic, de-
pendence onFx . These almost-sawtooth screening curren
which only recently have become accessible experimenta
generate very strong nonlinearities in ring-tank circuit s
tems. We can calculate~as a lookup table! the form of an
almost-sawtooth screening current response by solving
time-independent Schro¨dinger equation ~TISE! for the
ground state (k50) of a SQUID ring using the well-known
lumped component ring Hamiltonian@4#

H5
Q2

2C
1

~F2Fx!
2

2L
2\n cosS 2p

F

F0
D , ~1.1!

where the SQUID conjugate variables areF, the magnetic
flux threading the ring, andQ, the total displacement flux
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across the weak link; here\n/2 is the matrix element for
Josephson pair tunneling through the weak link~critical cur-
rent I c52en!. Solving the TISE yields the energy eigenva
uesEk(Fx) of the SQUID ring~i.e., the low-energy macro
scopic excitations of the ring modes! for levelsk50 ~ground
state!, k51 ~first excited state!, etc. The ring screening
current is then given by the first derivativêI s(Fx)&k
52]Ek(Fx)/]Fx with the second derivative yielding th
magnetic susceptibility of the ring, i.e.,xk(Fx)
52L]2Ek(Fx)/]Fx

2. In this description almost-sawtoot
ground-state screening current patterns develop when the
ergy separation between the ground and first excited st
DE01@Fx5(n1 1

2 )F0# is small, wheren is an integer. As an
example, we show in Fig. 1 the ground-state current pat
found by solving the ring TISE for the typical experiment
parameters \n50.06F0

2/L and \/ALC5\v0

50.043F0
2/L. Here DE01@(n1 1

2 )F0#5500 GHz, i.e., ex-
tremely large on the scale of the drive frequency~around 20
MHz! considered in our calculations. In this paper, which
concerned with modeling such rf-driven SQUID rings at
few degrees kelvin, we therefore consider only the adiab
ground state of the ring.

II. NONLINEAR DYNAMICAL DESCRIPTION

Our model system comprises a SQUID ring~weak-link
capacitanceC and ring inductanceL! that is coupled to a

FIG. 1. Ground-state screening current response of a SQ
ring found by solving the TISE for the ring parameters\n
50.06F0

2/L, \/ALC5\v050.043F0
2/L, andL53310210 H.
4035 © 1998 The American Physical Society
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4036 57T. D. CLARK et al.
measurement circuit resonator~the tank circuit!, with a sys-
tem quality factorQ. Starting from the quantum ground sta
of the ring, the nonlinear equation of motion for this coupl
system is@5#

Ct

d2w

dt2
1

1

Rt

dw

dt
1

w

Lt

5I in
coh cos~v rft1d!1I in

nz~ t !1m^I s~mw1Fx!&k , ~2.1!

where, for simplicity,d50. Here Lt and Ct are the tank
circuit inductance and capacitance, respectively,vR/2p
(51/2pALtCt) is the bare tank circuit resonance frequen
Rt is the tank circuit resistance on parallel resonance,w is the
rf flux in the tank circuit coil,m5M /Lt ~for ring-tank circuit
mutual inductanceM ! is the fraction of this rf flux coupled
into the SQUID ring, andI in

coh and I in
nz(t) are, respectively,

the coherent and noise current terms driving the tank circ
We note that the inductive coupling between the ring and
tank circuit is often given in terms of the flux coupling fact
K5@M2/LtL#1/25@m2Lt /L#1/2. In passing we note tha
when the characteristic time for the tank circuit (t t

52pALtCt) is very long on the characteristic time (ts) of
the SQUID ring, the resistively shunted junction plus capa
tance model@1,6# of the ring-tank circuit dynamics is esse
tially equivalent to the above@Eqs.~1.1! and ~2.1!# descrip-
tion in which the ring, treated quantum mechanically in
ground state, is coupled to a classical resonator. Withts
.1/(20 MHz) this is always the case in any physically re
istic SQUID ring. Our preference for the quantum descr
tion to calculate the screening current is influenced by
experimental work on point contact SQUID rings, driven
rf. We have shown elsewhere that it is possible experim
tally to access extremely small weak link capacitan
(10215 to 10216 F! in these point-contact systems@7–10#.
This makes a quantum-mechanical treatment approp
given typical operating temperatures of a few degrees kel

For the parameter ranges that interest us here, there a
analytic solutions to the SQUID ring equation~2.1! and it
must be solved numerically. This we have done extensiv
and reported our results~see Refs.@11,12#, for example!.
However, the experimentally relevant parameter space is
and we make no claim to have made an exhaustive inve
gation of all the inherent nonlinear phenomena associa
with it.

Our principal concern in this paper is to find the fr
quency response of the coupled ring-tank circuit syste
This can be calculated using a procedure that mimics
function of a real swept frequency source spectrum analy
In practice, the spectrum analyzer provides a constant am
tude drive current to the tank circuit, which is independen
frequency. This is usually termed the tracking generator
nal at frequencyv. The response of the circuit is then mixe
out at this frequency. Given the constant drive current,v is
swept over the frequency range of interest and the sys
response~for us, the rf voltage across the tank circuit! is
recorded.

Our method for modeling the experimental situation is
follows. We first setI in

coh50 so that the system is purel
noise driven. We then integrate the equation, samp
dw/dt and calculating the power spectrum by fast Four
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transform. This enables us to locate the noise peak in
quency space and thus estimate a window over which
wish to determine the frequency response. We note here
this procedure only gives us a guide to the spectral region
interest since the thermal power spectrum and the freque
response can differ considerably~particularly for tracking
generator signals that are substantially larger than the n
signal!. Nonetheless, in practice this window estimati
method works well.

Having established the spectral window of interest,
divide the region betweenvmin and vmax into N frequency
values atvmin , vmin1dv, vmin12dv,...,vmax. Starting at the
lowest frequency, we set arbitrary initial conditions~typi-
cally dw/dt5w5t50! andv5vmin and integrate Eq.~2.1!
to obtain the power spectrumP(vmin) by single-point Fou-
rier transform for a chosen value ofI in

coh, where

P~v!5 lim
S→`

2

S U E
0

S dw

dt
eivtdtU2

. ~2.2!

In terms of drive current periods (2p/v), we typically take
values ofS5M (2p/v), whereM is an integer and typi-
cally M5102– 104 as an approximation to the limit.

Without resetting the initial conditions, we then increme
the frequency so thatv5vmin1dv and calculateP(vmin
1dv) and likewiseP(vmin12dv),...,P(vmax), thereby build-
ing up the frequency response from left to right. Having do
so, we then decrement the frequency calculatingP(vmax),
P(vmax2dv), P(vmax22dv),...,P(vmin).

We find that the results obtained do not depend crucia
on the initial conditions set atvmin , but that the ‘‘history’’ in
the calculation as we sweep one way and then back me
that the left-to-right frequency response may not be ident
to the right-to-left frequency response if multiple solutions
the equation exist. It is worth pointing out that the chos
value I in

coh of the tracking generator does dramatically infl
ence the results. We like to refer to the tracking genera
signal in terms of themF rms that couples to the SQUID
There is no simple analytic relationship betweenI in

coh and
mF rms @11#, but mF rms can be calculated at the same time
the frequency response. For a given screening current
sponse^I s(Fx)&k ~which can be calculated for a givenk
state,\v0 , and \n! our ~left-to-right and right-to-left! fre-
quency response curves are determined by the param
vR , Q, I in

coh, m, and Fx . We note that sincêI s(Fx)&k ,
which is responsible for nonlinear behavior in the frequen
response, isF0 periodic inFx , the frequency response als
has the same flux periodicity.

We recently reported the observation of bistabilities in t
SQUID-ring–tank circuit system that lead to apparently d
continuous changes in the frequency response@13#. Weak
~cyclic fold! bifurcations of this general form were predicte
by Likharev @14# using perturbative analytical methods.
this paper we solve the full nonlinear equation of moti
~2.1!, accurate to all orders. Because of the computatio
demands of this problem our first report concentrated on
external flux valuesFx5(n1 1

2 )F0 andnF0 ~for integern!,
where we showed that a folding of the resonance curve
curs at moderately large tracking generator signals (mF rms
.F0). This folding ~as reported@13#! was seen to be to
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57 4037BIFURCATIONS AND CHAOS IN A COUPLED . . .
wards the right atFx5(n1 1
2 )F0 and towards the left a

Fx5nF0 . In Fig. 2 we show a similar example, whe
we have used typical experimental parameter val
for the coupled system, namely,\v050.043F0

2/L, \n
50.06F0

2/L, vR/2p521.0035 MHz, Q5100,
I in

coh522.61 nA, m51.49631022, T54.2 K, and Fx5(n
1 1

2 )F0 . Examples of such folding effects are well known
other areas of nonlinear dynamics@15,16#, but here it has
been observed in coupled SQUID-ring–tank circuit syste

III. CHAOS IN THE FOLDING

The appearance of fold regions indicates that two sta
solutions to the equation exist. To reveal these solutions
choose a frequency within the fold region such as that in
cated byv8 in Fig. 2. For a given initial condition we the
integrate Eq.~2.1! for several3Q periods ofv8 to allow
transients to die out, after which we plot the phase pla
dw/dt vs w. By repeatedly doing this for randomly chose
initial conditions we may reveal in the phase plane the so
tions that exist to the equation. An example is shown in F
3~a!, where we clearly see a large periodic solution cor
sponding to pathA on the resonance curve of Fig. 2, and
smaller chaotic solution, enlarged in Fig. 3~b!, corresponding
to pathB in Fig. 2 @the parameterg5A12K2x(Fx)uFx50 in
Fig. 3 is used for our own calculational convenience#. We
can verify the chaotic nature of this smaller solution by c
culating the Lyapunov exponents of the system. These ex
nents give a measure of the average amount of stretching
folding that occurs and is typical of chaotic systems. Fo
second-order differential equation such as Eq.~2.1!, there are
three Lyapunov exponents corresponding to the three
grees of freedomt, w, anddw/dt in the phase space. One o
these exponents is zero, reflecting the absence of expan
or contraction along the time axis with respect to arbitrar
close initial conditions. Either the remaining two are bo
negative~for the case of a periodic attractor! or one is nega-
tive and the other positive~for the case of a chaotic attrac
tor!. Chaos is defined by the presence of a positive Lyapu

FIG. 2. Frequency response forFx5(n1
1
2 )F0 , wheren is an

integer, with the parameters\v050.043F0
2/L, \n50.06F0

2/L,
vR/2p521.0035 MHz, Q5100, I in

coh522.61 nA, m51.496
31022, andT54.2 K; herev8/2p520.5 MHz.
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exponent. For a dissipative system such as ours, there
further constraint, which is that the sum of the expone
must be negative. Details about the origin, nature, and m
ods of the determination of Lyapunov exponents can
found in Refs.@17–20#.

In Fig. 4 we show the Lyapunov exponents as a funct
of frequency corresponding to the frequency response cu
of Fig. 2. In Fig. 4~a! we show the exponents for the left-to
right sweep (A) in Fig. 2 and in Fig. 4~b! we show the
exponents for the right-to-left sweep (B) in the same figure.
For clarity the trivial zero exponents are not shown.

In both Figs. 4~a! and 4~b! we see that on the low
frequency side of the fold the exponents are~2,0,2!, indi-
cating a periodic solution. On the high-frequency side of
fold both Figs. 4~a! and 4~b! show exponents~2,0,1!, indi-
cating chaotic solutions. In the fold region itself~the center
region!, Fig. 4~a! shows exponents~2,0,2!, which means
that pathA shown in Fig. 2 is due to a periodic solution~cf.
the larger orbit in Fig. 3!. Correspondingly, Fig. 4~b! exhibits
exponents~2,0,1! in this region, indicating that pathB
arises from chaotic solutions such as that shown in Fig. 2~at
frequencyv852p320.5 MHz!.

This pattern of behavior is all the more intriguing sin
the presence of chaos is not immediately apparent from
frequency response curve. The possibility of experimenta
observing chaotic oscillations in the rf SQUID magnetome
was discussed from a theoretical viewpoint in some detai

FIG. 3. Phase planedw/dt vs w ~in normalized units! of Fig. 2
at frequencyv8 along ~a! pathA and ~b! pathB.
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4038 57T. D. CLARK et al.
our Ref.@12#. The results presented here suggest that cha
in fact accessible in experiments@13#, but that it can easily
be overlooked. It is worth pointing out that the circuit para
eters that we have used here are quite typical of experime
ones.

IV. ATTRACTOR BASINS

The existence of two solutions means that a separatri
basin-of-attraction boundary exists between the two. To
veal the structure of the separatrix, we use a Monte C
approach. Thus we select initial conditions at random a
solve the equation to determine to which attractor the so
tion tends. In our case the separatrix is, in fact, three dim
sional, but we choose to fix the initial timet50 and look at
a cross section of the basin of attraction. In Fig. 5 we sh
the results of such a calculation~at v8 and for the circuit
parameters of Fig. 2!. The dots indicate initial conditions tha
gravitate to the chaotic solution. The blank region conta
points that gravitate to the periodic solution, but, for clari
these have been omitted from the figure.

The separatrix itself is formed by the boundary betwe
these sets of points and its spiral structure indicates the
istence of a saddle point. Integrating Eq.~2.1! forward in
time, the separatrix acts as a repellor such that initial con

FIG. 4. Lyapunov exponents of Fig. 2 along~a! pathA and ~b!
pathB.
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tions arbitrarily close to it are repelled away to one of t
two stable solutions. By reversing the direction of time in t
integration, repellors become attractors and vice versa. I
grating backward in time, all paths are repelled from t
chaotic and periodic attractors and gravitate towards
separatrix. The spiral nature of the separatrix means
when the direction of time is reversed all paths fly off
infinity. Hence there are no stable solutions in the rever
time direction. This implies that a saddle point exists on
separatrix that is unstable in both the forward and reve
time directions.

Figure 6 shows another example of this effect for t
same circuit parameters, but atFx5nF0 . The frequency
response shown in Fig. 6 exhibits a similar fold, but with t
opposite orientation. There are no positive Lyapunov ex
nents corresponding to this frequency response, so tha
paths are attributable to periodic solutions to the equat
All the circuit parameters that we have performed calcu
tions for atFx5nF0 have this property, i.e., chaotic solu
tions do not appear to arise at this value of static exter
flux. This is entirely consistent with our previous findings o
the chaotic dynamics of this system~other than where the

FIG. 5. Basins of attraction of Fig. 2 in thedw/dt vs w plane at
frequencyv8/2p520.5 MHz.

FIG. 6. Frequency response for the same parameters as in F
but with Fx5nF0 , wheren is an integer.
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57 4039BIFURCATIONS AND CHAOS IN A COUPLED . . .
screening current function is a discontinuous sawtooth an
exceptionally high coupling strengths! @12#. There are, how-
ever, two of these periodic solutions within the fold. F
example, at frequencyv952p321.4 MHz, in Fig. 6 there
are two solutions with orbits that differ in magnitude in
similar fashion to those of Fig. 3~a!. Figure 7 shows the
basins of attraction at the frequencyv9 in Fig. 6. The dots
represent initial conditions that gravitate to the solution
pathA in Fig. 6. The blank regions contain points that gra
tate to the solution on pathB although, as before, these ha
been omitted from the figure for the sake of clarity. On
again the spiral structure indicates the presence of a sa
point. A curious property of the system is revealed here si
the separatrix spirals of Figs. 5 and 7 have the opposite
entation. This also indicates that it is not merely the prese
of chaos that gives rise to the spiral in Fig. 5.

V. OPPOSED „HAMMERHEAD … BIFURCATIONS

We now extend our investigation to solve Eq.~2.1! for
intermediate values of the external flux, i.e.,nF0,Fx,(n
1 1

2 )F0 . In Fig. 8 we show the frequency response curv

FIG. 7. Basins of attraction of Fig. 6 in thedw/dt vs w plane at
frequencyv9/2p521.4 MHz.

FIG. 8. ‘‘Hammerhead’’ frequency response for the same
rameters as in Fig. 2, but withFx50.625F0 .
at

n
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e
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s

for sweeping in both directions atFx50.625F0 for the same
circuit parameters as the previous figures. This figure sh
a truly remarkable nonlinear effect, where there are two
posed and strongly folded bifurcation regions. Weak
folded opposed bifurcations of this type were predicted e
lier by Likharev @14#. The strongly folded bifurcations o
Fig. 8 have been observed by us experimentally in a SQU
ring–tank circuit system@21# driven at large (.F0) rf am-
plitudes. Previously, nonlinear features had been seen in
experimental resonance curves of SQUID-ring–tank circ
systems, but no folds, either singly or opposed@22,23#. The
dotted lines drawn in Fig. 8 have been inserted to indic
the regions where saddle points exist. These lines do
represent solutions to the equation, but they are conven
for visualizing the fold structure. The similarity of the ove
all shape of the curve to an anvil or hammerhead is
reason why we have chosen the phrase ‘‘hammerhead r
nance’’ to describe this effect. Similar behavior has be
seen by Nayfeh, Nayfeh, and Pakdemirli@24#, as a theoreti-
cal consideration. However, to our knowledge, this has ne
before been observed in an experiment.

The Lyapunov exponents corresponding to Fig. 8 are
less than or equal to zero, indicating that the underlying
lutions are periodic. In Fig. 9 we show the basins of attr
tion corresponding to the frequencies~a! v le52p
319.75 MHz and~b! v ri52p320.9 MHz. Again these re-
veal the spiraling structure associated with saddle points.
see here that the spirals have the same handedness as t
Fig. 5, although the tightness of the spiraling is marke
-

FIG. 9. Basins of attraction of Fig. 8 in thedw/dt vs w plane at
frequencies~a! v le/2p519.75 MHz and~b! v ri/2p520.9 MHz.
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different for Figs. 9~a! and 9~b!. The concentration of points
around the origin of the spiral in Fig. 9~b! is due to the fact
that this figure contains points from two Monte Carlo ru
over different search ranges. The figure suggests that
spiral unfolds towards the high-frequency side of the
sponse.
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