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Bifurcations and chaos in a coupled
superconducting-quantume-interference-device ring-resonator system

T. D. Clarky J. F. Ralph, R. J. Prance, H. Prance, J. Diggins, and R. Whiteman
Physical Electronics Group, School of Engineering, University of Sussex, Brighton, Sussex BN1 9QT, United Kingdom
(Received 3 November 1997

In this paper we consider from a theoretical viewpoint the dynamical behavior of a superconducting-
guantum-interference-device rirtg single Josephson weak link enclosed by a thick superconductingiming
its ground state when coupled inductively to a radio frequegmniytank circuit resonator. We show that this
simple system, when strongly driven at rf, displays a rich nonlinear dynamical structure, including unusual fold
bifurcations and chao$S1063-651X98)02904-3

PACS numbefs): 05.45:+b, 41.20—q, 47.20.Ky, 85.25.Dq

I. INTRODUCTION across the weak link; hergv/2 is the matrix element for
Josephson pair tunneling through the weak lialitical cur-
Over the years the nonlinear dynamics associated withentl.=2ev). Solving the TISE yields the energy eigenval-
circuits containing Josephson weak-link devices have beeHesE,(®,) of the SQUID ring(i.e., the low-energy macro-
the focus of a great deal of attention. In particular, muchscopic excitations of the ring modefsr levels«=0 (ground
work has been concentrated on the behavior of a simplétatd, k=1 (first excited state etc. The ring screening
superconducting-quantum-interference-deVi8®UID) ring ~ current is then given by the first derivativd s(®,)),
(a single Josephson weak link, capacita@ceenclosed by a = ~ IE«(P,)/d®y with the second derivative yielding the
thick superconducting ring, inductancd) inductively — Magnetic susceptibility of the ring, i.e. x,(Py)
coupled to a parallel radio frequenésf) LC resonant tank =~ AG°E(®,)/d®3. In this description almost-sawtooth
circuit [1—3]. This interest arises because of the nonlineadround-state screening current patterns develop when the en-

response of the screening supercurrent flowing in a SQUIZ'YY separatioq betw_een the ground _and f_irst excited states
fing to an external magnetic flu®, , which, for finite cou- 2 Eoil ®x=(n+3)®Py] is small, wheren is an integer. As an

S : ample, we show in Fig. 1 the ground-state current pattern
pling, is enhanced by the feedback between the ring and t ; . : ,
tank circuit. In recent experimental work we have exploreg%<und by solving the ring TISE for the typical experimental

_ 2 A C—
some of the rich nonlinear effects that can be generated iaaéaorz%ezr/sA ﬁy_%?;@()//:_l q)anﬂ 500 ZHAC__ﬁwo
this apparently simple ring-tank circuit system when it is,_ = | IO : etrhe Oj{(nftﬁ) dOJ_ ' Z, "e"dz)g
driven at rf. In this paper we consider in detail the theoreticaff€MelY large on the scale of the drive frequertasound 20
model we have used to describe the system. Hz) considered in our calculations. In this paper, which is

The screening current response of a SQUID ring can bconcerned with modeling such rf-driven SQUID rings at a
. g cur P . ) ng C: Fow degrees kelvin, we therefore consider only the adiabatic
conveniently categorized as reversible or irreversible in th

external flux®,, these two regimes of behavior being re-eglround state of the fing.

ferred to, respectively, as inductive and hysteretic. In this Il. NONLINEAR DYNAMICAL DESCRIPTION
work we will be concerned only with reversible responses, in
the inductive(dissipation-lessmode, in which the screening
current has an almost-sawtooth,- (=h/2e) periodic, de-

Our model system comprises a SQUID rifgeak-link
capacitanceC and ring inductance\) that is coupled to a

pendence o, . These almost-sawtooth screening currents, 03
which only recently have become accessible experimentally,
generate very strong nonlinearities in ring-tank circuit sys- 0.21
tems. We can calculat@s a lookup tablethe form of an

almost-sawtooth screening current response by solving the 0.9
time-independent Schdinger equation (TISE) for the <>,

ground state £=0) of a SQUID ring using the well-known G 7 001
lumped component ring Hamiltonigd#|

-0.1
Q* (®-Dy)? d 02
H_E—’_T_hlj co 27730 , (11)
-0.3
0 1 2 3
where the SQUID conjugate variables abe the magnetic By D

flux threading the ring, an®@, the total displacement flux

FIG. 1. Ground-state screening current response of a SQUID
ring found by solving the TISE for the ring parametets
*Electronic address: t.d.clark@sussex.ac.uk =0.06DP%/ A, A/ JAC=%wy=0.043DZ/ A, andA=3x10 °H.
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measurement circuit resonat@he tank circuit, with a sys-  transform. This enables us to locate the noise peak in fre-
tem quality factor). Starting from the quantum ground state quency space and thus estimate a window over which we
of the ring, the nonlinear equation of motion for this coupledwish to determine the frequency response. We note here that

system ig5] this procedure only gives us a guide to the spectral region of
interest since the thermal power spectrum and the frequency

d’¢ 1de o response can differ considerab(particularly for tracking
tqi2 + ﬁt dt + |__I generator signals that are substantially larger than the noise

signa). Nonetheless, in practice this window estimation
=17 cogwyt+ 8) + 1A + u(l(me+®Py),, (2.1  method works well.

Having established the spectral window of interest, we
where, for simplicity, 5=0. HereL, and C, are the tank divide the region betweem,;, and w4 into N frequency
circuit inductance and capacitance, respectivedy/2w values atw yp, Wmint 0w, ®min+200,...wn.. Starting at the
(=1/27L,C,) is the bare tank circuit resonance frequency,lowest frequency, we set arbitrary initial conditioftypi-

R, is the tank circuit resistance on parallel resonagds,the  cally dp/dt=¢=t=0) and w = w,;, and integrate Eq.2.1)
rf flux in the tank circuit coil,u=M/L; (for ring-tank circuit  to obtain the power spectruf(w,,) by single-point Fou-
mutual inductanceéV) is the fraction of this rf flux coupled rier transform for a chosen value Hf°", where
into the SQUID ring, and " and I"%(t) are, respectively,
the coherent and noise current terms driving the tank circuit. . 2| (sde .
We note that the inductive coupling between the ring and the P(w)=1lm < ’ fo at e'“'dt
tank circuit is often given in terms of the flux coupling factor Soe
K=[M?/L,A]*?=[ 2L /AT"% In passing we note that . . .
when the characteristic time for the tank circuit, (N terms of drive current periods (@), we typically take
=2mL,C,) is very long on the characteristic timeJ of  Values 0fS=M (2m/w), whereM is an integer and typi-
the SQUID ring, the resistively shunted junction plus capacially M= 10?-10" as an approximation to the limit.
tance mode[1,6] of the ring-tank circuit dynamics is essen- Without resetting the initial conditions, we then increment
tially equivalent to the abovEEgs. (1.1) and (2.1)] descrip-  the frequency so thab=wni,+dw and calculateP (wmin
tion in which the ring, treated quantum mechanically in its T @) and likewiseP(wpin+260),... P(omay), thereby build-
ground state, is coupled to a classical resonator. With N9 up the frequency response from left to right. Having done
~1/(20 MHz) this is always the case in any physically real-S0: We then decrement the frequency calculaf{@may),
istic SQUID ring. Our preference for the quantum descrip—P(‘*’maX__ 6w), P(0max—260),... P(@nin)- .
tion to calculate the screening current is influenced by our Ve find that the results obtained do not depend crucially
experimental work on point contact SQUID rings, driven atOn the initial conditions set aby,y, but that the “history” in
rf. We have shown elsewhere that it is possible experimenth€ calculation as we sweep one way and then back means
tally to access extremely small weak link capacitancedhat the left-to-right frequency response may not be identical
(1075 to 10726 F) in these point-contact systenig—10. to the ngh_t—to-left frquency response if multiple solutions to
This makes a quantum-mechanical treatment appropriat@e equahtlon exist. It_|s worth pointing out that _the chosen
given typical operating temperatures of a few degrees kelvinvalue I of the tracking generator does dramatically influ-
For the parameter ranges that interest us here, there are fBce the results. We like to refer to the tracking generator
analytic solutions to the SQUID ring equatig@.1) and it ~ signal in terms of theu®,s that couples to the SQUID.
must be solved numerically. This we have done extensivelyrhere is no simple analytic relationship betwekif" and
and reported our resultsee Refs[11,17], for example. u® s [11], but u® s can be calculated at the same time as
However, the experimentally relevant parameter space is vattie frequency response. For a given screening current re-
and we make no claim to have made an exhaustive investsponse(l4(®,)), (which can be calculated for a given
gation of all the inherent nonlinear phenomena associatestate, 7w, andzv) our (left-to-right and right-to-left fre-
with it. quency response curves are determined by the parameters
Our principal concern in this paper is to find the fre- wg, Q, Ii°n°h, u, and ®,. We note that sincély(®,)),,
guency response of the coupled ring-tank circuit systemwhich is responsible for nonlinear behavior in the frequency
This can be calculated using a procedure that mimics theesponse, is, periodic in®,, the frequency response also
function of a real swept frequency source spectrum analyzehas the same flux periodicity.
In practice, the spectrum analyzer provides a constant ampli- We recently reported the observation of bistabilities in the
tude drive current to the tank circuit, which is independent ofSQUID-ring—tank circuit system that lead to apparently dis-
frequency. This is usually termed the tracking generator sigeontinuous changes in the frequency respdrisd. Weak
nal at frequency. The response of the circuit is then mixed (cyclic fold) bifurcations of this general form were predicted
out at this frequency. Given the constant drive currents by Likharev[14] using perturbative analytical methods. In
swept over the frequency range of interest and the systenhis paper we solve the full nonlinear equation of motion
response(for us, the rf voltage across the tank cirguis  (2.1), accurate to all orders. Because of the computational
recorded. demands of this problem our first report concentrated on the
Our method for modeling the experimental situation is asexternal flux value$,= (n+ 3)®, andnd, (for integern),
follows. We first setl®®'=0 so that the system is purely where we showed that a folding of the resonance curve oc-
noise driven. We then integrate the equation, samplingurs at moderately large tracking generator signal® (s
de/dt and calculating the power spectrum by fast Fourier=®,). This folding (as reported 13]) was seen to be to-

2
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FIG. 2. Frequency response fdirX:(n+%)<I>0, wheren is an "
integer, with the parameterswo=0.043D3/A, %v=0.08D3/A,
wrl2m=21.0035 MHz, (=100, 1°'=22.61nA, u=1.496 10
X 1072, andT=4.2 K; hereo’' /2= 20.5 MHz. 5
_ 2mg. )dwo,.,..,, |
wards the right atb,=(n+3)®d, and towards the left at (w o,) 4t
o,=nd,. In Fig. 2 we show a similar example, where N
we have used typical experimental parameter values 10
for the coupled system, namelﬁw0=0.043D§/A, hv -15

=0.08D§/A, wgl27=21.0035 MHz, ()=100, 20
Iﬁ?h=22.61 nA, ©=1.496x10 2, T=4.2K, and ®,=(n

+3)®,. Examples of such folding effects are well known in
other areas of nonlinear dynamif$5,16], but here it has @/Ps

been observed in coupled SQUID-ring—tank circuit systems. . . , _
FIG. 3. Phase plang¢/dt vs ¢ (in normalized unitsof Fig. 2

at frequencyw’ along(a) pathA and(b) pathB.

lll. CHAOS IN THE FOLDING

The appearance of fold regions indicates that two stabl@xponent. For a dissipative system such as ours, there is a
solutions to the equation exist. To reveal these solutions W&, rther constraint, which is that the sum of the exponents
choose a frequency within the fold region such as that indiyyyst he negative. Details about the origin, nature, and meth-
cated by’ in Fig. 2. For a given initial condition we then gds of the determination of Lyapunov exponents can be
integrate Eq.(2.1) for severalx() periods ofw’ to allow  found in Refs[17-20.
transients to die out, after which we plot the phase plane | Fig. 4 we show the Lyapunov exponents as a function
de/dt vs ¢. By repeatedly doing this for randomly chosen of frequency corresponding to the frequency response curves
initial conditions we may reveal in the phase plane the solupt Fig. 2. In Fig. 4a) we show the exponents for the left-to-
tions that exist to the equation. An example is shown in Figfight sweep f) in Fig. 2 and in Fig. &) we show the
3(a), where we clearly see a large periodic solution correexponents for the right-to-left sweep) in the same figure.
sponding to patiA on the resonance curve of Fig. 2, and afor clarity the trivial zero exponents are not shown.
smaller chaotic solution, enlarged in FigbB corresponding In both Figs. 4a) and 4b) we see that on the low-
to pathB in Fig. 2[the parameteg=y1—-K*x(®,)[¢ —0in  frequency side of the fold the exponents &rg0,—), indi-

Fig. 3 is used for our own calculational conveniehd#/e  cating a periodic solution. On the high-frequency side of the
can verify the chaotic nature of this smaller solution by cal-fold both Figs. 4a) and 4b) show exponent$—,0,+), indi-
culating the Lyapunov exponents of the system. These expaating chaotic solutions. In the fold region itsélfe center
nents give a measure of the average amount of stretching amelgion), Fig. 4@ shows exponent$—,0,—), which means
folding that occurs and is typical of chaotic systems. For ahat pathA shown in Fig. 2 is due to a periodic soluti¢cf.
second-order differential equation such as @dl), there are  the larger orbit in Fig. B Correspondingly, Fig. @) exhibits
three Lyapunov exponents corresponding to the three desxponents(—,0,+) in this region, indicating that pati®
grees of freedon, ¢, andde/dt in the phase space. One of arises from chaotic solutions such as that shown in Figt2
these exponents is zero, reflecting the absence of expansifnequencyw’ =27X20.5 MH2).

or contraction along the time axis with respect to arbitrarily ~ This pattern of behavior is all the more intriguing since
close initial conditions. Either the remaining two are boththe presence of chaos is not immediately apparent from the
negative(for the case of a periodic attraciar one is nega- frequency response curve. The possibility of experimentally
tive and the other positiv€for the case of a chaotic attrac- observing chaotic oscillations in the rf SQUID magnetometer
tor). Chaos is defined by the presence of a positive Lyapunowas discussed from a theoretical viewpoint in some detail in
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FIG. 5. Basins of attraction of Fig. 2 in thdgp/dt vs ¢ plane at
frequencyw’/27m=20.5 MHz.

08 b) tions arbitrarily close to it are repelled away to one of the
two stable solutions. By reversing the direction of time in the
integration, repellors become attractors and vice versa. Inte-
grating backward in time, all paths are repelled from the
chaotic and periodic attractors and gravitate towards the

d separatrix. The spiral nature of the separatrix means that

02 when the direction of time is reversed all paths fly off to

0 infinity. Hence there are no stable solutions in the reversed

; time direction. This implies that a saddle point exists on the

separatrix that is unstable in both the forward and reverse

time directions.

ME 185 18 195 @ 205 21 215 22 Figure 6 shows another example of this effect for the

same circuit parameters, but &,=n®d,. The frequency
Frequency (MHz) response shown in Fig. 6 exhibits a similar fold, but with the
opposite orientation. There are no positive Lyapunov expo-
nents corresponding to this frequency response, so that all
paths are attributable to periodic solutions to the equation.
Il the circuit parameters that we have performed calcula-
ions for at®,=n®d, have this property, i.e., chaotic solu-
tions do not appear to arise at this value of static external
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A

FIG. 4. Lyapunov exponents of Fig. 2 alof@ path A and (b)
pathB.

our Ref.[12]. The results presented here suggest that chaos
in fact accessible in experimenit$3], but that it can easily
be overlooked. It is worth pointing out that the circuit param-

IV. ATTRACTOR BASINS

The existence of two solutions means that a separatrix or'g’ ------------------- path B —
basin-of-attraction boundary exists between the two. To re-m .}  § Tl
veal the structure of the separatrix, we use a Monte Carlo=
approach. Thus we select initial conditions at random and g
solve the equation to determine to which attractor the solu- 5§
tion tends. In our case the separatrix is, in fact, three dimen-
sional, but we choose to fix the initial timie=0 and look at
a cross section of the basin of attraction. In Fig. 5 we show
the results of such a calculatiqat '’ and for the circuit s
parameters of Fig.)2The dots indicate initial conditions that / "
gravitate to the chaotic solution. The blank region contains w
points that gravitate to the periodic solution, but, for clarity, 180, & - -+ *21.5 =~ s
these have been omitted from the figure.

The separatrix itself is formed by the boundary between Frequency (MHz)
these sets of points and its spiral structure indicates the ex-
istence of a saddle point. Integrating EQ.1) forward in FIG. 6. Frequency response for the same parameters as in Fig. 2,
time, the separatrix acts as a repellor such that initial condibut with ®,=n®,, wheren is an integer.

espo

-150

Frequency r




57 BIFURCATIONS AND CHAOS IN A COUPLBE . .. 4039

1500

H L]
AL

A
b}
[
]

500

o0 't-."'-_*;-,|l

e )&

ay ' Rag®
-500 =y J:

T
-1000 {"‘ -

iy
1500 .\"{ﬁ,{l ’

" f'}'..:-j H.;Lk‘

-2000,
-300 -200 -100 0 100 200 300

FIG. 7. Basins of attraction of Fig. 6 in thdgp/dt vs ¢ plane at D) tsoo el
frequencyw”/2m=21.4 MHz. -

screening current function is a discontinuous sawtooth and at 10000 :
exceptionally high coupling strengthisl2]. There are, how- (ﬂg,) e . : -
ever, two of these periodic solutions within the fold. For \“ri®/ df R
example, at frequency”=2mx21.4 MHz, in Fig. 6 there s Lo
are two solutions with orbits that differ in magnitude in a )
similar fashion to those of Fig.(8). Figure 7 shows the .
basins of attraction at the frequeney in Fig. 6. The dots ey e T
represent initial conditions that gravitate to the solution on Y
pathA in Fig. 6. The blank regions contain points that gravi- - = T s Toto
tate to the solution on patB although, as before, these have @ /®o

been omitted from the figure for the sake of clarity. Once

again the spiral structure indicates the presence of a saddle FIG. 9. Basins of attraction of Fig. 8 in thip/dt vs ¢ plane at
point. A curious property of the system is revealed here sincéequenciesa) w/27=19.75 MHz andb) w./27=20.9 MHz.
the separatrix spirals of Figs. 5 and 7 have the opposite ori-

entation. This also indicates that it is not merely the presencfyr sweeping in both directions dt,=0.625b, for the same

of chaos that gives rise to the spiral in Fig. 5. circuit parameters as the previous figures. This figure shows
a truly remarkable nonlinear effect, where there are two op-
V. OPPOSED (HAMMERHEAD ) BIFURCATIONS posed and strongly fqlded bifgrcation regions.. Weakly
folded opposed bifurcations of this type were predicted ear-
We now extend our investigation to solve EQ.1) for  lier by Likharev[14]. The strongly folded bifurcations of

intermediate values of the external flux, i.e®,<®,<(n Fig. 8 have been observed by us experimentally in a SQUID-
+3)®,. In Fig. 8 we show the frequency response curveging—tank circuit systeni21] driven at large & ®,) rf am-
plitudes. Previously, nonlinear features had been seen in the
experimental resonance curves of SQUID-ring—tank circuit
120 . systems, but no folds, either singly or oppo$2d,23. The
dotted lines drawn in Fig. 8 have been inserted to indicate
the regions where saddle points exist. These lines do not
represent solutions to the equation, but they are convenient
for visualizing the fold structure. The similarity of the over-
all shape of the curve to an anvil or hammerhead is the
reason why we have chosen the phrase “hammerhead reso-
nance” to describe this effect. Similar behavior has been
seen by Nayfeh, Nayfeh, and Pakdem(i@d], as a theoreti-
cal consideration. However, to our knowledge, this has never
before been observed in an experiment.

The Lyapunov exponents corresponding to Fig. 8 are all
less than or equal to zero, indicating that the underlying so-
lutions are periodic. In Fig. 9 we show the basins of attrac-
tion corresponding to the frequenciesa) w,=27

Frequency (MHz) X 19.75 MHz and(b) w,;=27x20.9 MHz. Again these re-
veal the spiraling structure associated with saddle points. We

FIG. 8. “Hammerhead” frequency response for the same pa-See here that the spirals have the same handedness as that in
rameters as in Fig. 2, but witle,=0.625D. Fig. 5, although the tightness of the spiraling is markedly

Frequency response (dBm)

19 19.5 20 205 21 21.5 22
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different for Figs. a) and 9b). The concentration of points ACKNOWLEDGMENTS

around the origin of the spiral in Fig(l9 is due to the fact

that this figure contains points from two Monte Carlo runs We would like to thank the Engineering and Physical Sci-
over different search ranges. The figure suggests that thences Research Council for its generous funding of this
spiral unfolds towards the high-frequency side of the reswork. We would also like to thank Professor P. McClintock,

sponse. Professor G. King, and Dr. J. llichev for helpful discussions.

[1] W. C. Schieve, A. R. Bulsara, and E. W. Jacobs, Phys. Rev. A and R. J. Prance, Phys. Rev4H, 1854(1994).

37, 3541(1988. [13] R. Whiteman, J. Diggins, V. Schmann, G. Buckling, T. D.
[2] A. R. Bulsara, J. Appl. Phys$0, 2462(1986. Clark, R. J. Prance, H. Prance, J. F. Ralph, and A. Widom,
[3] M. P. Soerensen, M. Barchelli, P. L. Christiansen, and A. R. Phys. Lett. A226, 275(1997).

Bishop, Phys. Lettl09A, 347(1985. [14] See the discussion in K. K. Likhareynamics of Josephson
[4] T. P. Spiller, T. D. Clark, R. J. Prance, and A. Widom, in Junctions and Circuit§Gordon and Breach, Sydney, 1986

Progress in Low Temperature Physiedited by D. F. Brewer pp. 490-494

(North-Holland, Amsterdam, 1992Vol. XIIl. [15] J. M. T. Thompson and H. B. Stewafton-linear Dynamics
[5] J. F. Ralph, T. P. Spiller, T. D. Clark, R. J. Prance, and H. and ChaogWiley, New York, 199}, p. 125.

Prance, Int. J. Mod. Phys. 8 2637(1994. [16] P. G. DrazinNonlinear System&ambridge University Press,
[6] See, for example, A. Barone, and G. PaterRbysics and Cambridge, 1992 p. 222.

Applications of the Josephson Effe@Viley, New York, [17] J. D. Farmer, Physica B, 366 (1982.
1982, Chap. 13; see also J. C. GalldgQUIDS, The Joseph- [18] J. D. Farmer, Physica B3, 153(1983.
son Effects and Superconducting Electronieliiger, Bristol, [19] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano,
1991). Physica D16, 285(1985.

[7] H. Prance, R. J. Prance, T. P. Spiller, T. D. Clark, A. Clip- [20] See, for example, R. C. HilboriChaos and Non-linear Dy-
pingdale, J. Ralph, J. Diggins, and A. Widom, Phys. Lett. A namics(Oxford University Press, New York, 1994

181, 259 (1993. [21] R. Whiteman, J. Diggins, V. Schmann, T. D. Clark, R. J.
[8] J. F. Ralph, T. D. Clark, R. J. Prance, H. Prance, and J. Dig- Prance, H. Prance, and J. F. Ralph, Phys. LetR34 205
gins, J. Phys.: Condens. Mattgr10 753(1996. (1997.
[9] J. F. Ralph, T. D. Clark, J. Diggins, R. J. Prance, H. Prance[22] V. I. Shnyrkov, V. A. Khlus, and G. M. Tsoi, J. Low Temp.
and A. Widom, J. Phys.: Condens. Mat&r8275(1997. Phys.39, 477(1980.
[10] T. P. Spiller, T. D. Clark, R. J. Prance, H. Prance, A. Widom, [23] J. G. Park, Phys& B & C 107B, 745(1981J).
and Y. Srivastava, Nuovo Cimento B)7, 725(1992. [24] A. H. Nayfeh, S. A. Nayfeh, and M. Pakdemirli, Mon-linear
[11] J. F. Ralph, T. P. Spiller, T. D. Clark, R. J. Prance, and H. Dynamics and Stochastic Mechanieslited by W. Klienmann
Prance, Phys. Lett. A80, 56 (1993. and N. Sri NamachchivayéCRC, Boca Raton, FL, 1995p.

[12] J. Diggins, J. F. Ralph, T. P. Spiller, T. D. Clark, H. Prance, 190.



